Mark scheme - Astrophysics and Cosmology

5.5 Astrophysics and Cosmology

1 2	C	1	
	Total	1	
1 3	A	1	
	Total	1	
1 4	B	1	
	Total	1	
5	C	1	
	Total	1	
$\begin{aligned} & 1 \\ & 6 \end{aligned}$	Uniform distribution of matter (everywhere in the Universe)	B1	Allow: density of Universe (approximately) constant throughout Not: references/idea of isotropic/"looks the same in all directions" Examiner's Comments Just under half of the candidates got this term correct. The majority that did not confused this term with isotropic or used insufficiently clear language, such as 'the universe is the same everywhere'.
	Total	1	
1	D	1	
	Total	1	
$\begin{aligned} & 1 \\ & 8 \end{aligned}$	A	1	
	Total	1	
1 9	D	1	Examiner's Comments The Chandrasekhar limit for the mass of a white dwarf is 1.4 solar masses. The mass of the Sun is $2.0 \times 10^{30} \mathrm{~kg}$, so the mass limit for a white dwarf is $2.8 \times 10^{30} \mathrm{~kg}$. Only star D exceeds this limit, so it cannot be a white dwarf.
	Total	1	
2	B	1	Examiner's Comments Option D is the speed of light, so the galaxy cannot be travelling this fast. The change in wavelength for the galaxy is 20 nm . The laboratory wavelength for this light is 590 nm . The relationship we need is that the fractional change in wavelength for light from a galaxy approximately equals the fraction of the speed of light for that galaxy.

5.5 Astrophysics and Cosmology

2 9		B	1	
		Total	1	
3		Any two from: - Black hole has smaller mass / radius / size - Black hole has higher density/gravitational field strength/ stronger gravitational field - black hole absorbs light / does not emit visible light - Has an escape velocity => c - No fusion in a black hole (ORA)	B1 B1	Allow black hole emits Hawking radiation
		Total	2	
3 1		$\begin{aligned} & \lambda_{1}=d \sin 12.5=4.33 \times 10^{-7} \mathrm{~m} \\ & \text { giving } 1 / \mathrm{d}=5 \times 10^{5} \text { or } d=2 \times 10^{-6} \end{aligned}$	C1	or $\lambda_{2}=\mathrm{d} \sin 14.0=4.84 \times 10^{-7}(\mathrm{~m})$
		$\lambda_{3}=\sin 19.0 / 5 \times 10^{5}=6.51 \times 10^{-7}(\mathrm{~m})$ or $\lambda_{1}=d \sin 12.5=4.33 \times 10^{-7} \text { and } \lambda_{3}=d$ $\sin 19.0$ so $\lambda_{3}=4.33 \times 10^{-7} \sin 19.0 / \sin 12.5=$ $6.51 \times 10^{-7}(\mathrm{~m})$	A1	$\begin{aligned} & \text { or use } \lambda_{2}=d \sin 14.0=4.84 \times 10^{-7} \mathrm{~m} \sin 19.0 / \sin 12.5=0.326 / 0.216 \\ & =1.50 \end{aligned}$
		Total	2	
$\begin{aligned} & 3 \\ & 2 \end{aligned}$	i	(Stronger) gravitational attraction between nearby galaxies affects motion / clustering of galaxies	B1	
	ii	Expansion rate may not have been constant / non-linear expansion / effect of dark energy causing accelerating rate of expansion	B1	
		Total	2	
3 3		$\lambda_{\text {max }} \times T$ should be constant if Wien's law is obeyed.	M1	
		At least data from three stars is used to carry out the test and a clear conclusion.	A1	Ignore POT Note $\lambda_{\text {max }} \times T$ values are $2.91\left(\times 10^{-3}\right)$, $2.91\left(\times 10^{-3}\right), 2.88\left(\times 10^{-3}\right)$ and $2.99\left(\times 10^{-3}\right)-$ hence expect 'yes the law is obeyed'.
		Total	2	

		$\begin{aligned} & E=(h c / \lambda)=6.63 \times 10^{-34} \times 3(.00) \times 10^{8} / \\ & 486 \times 10^{-9} \\ & E=4.09 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	This is a 'show that' question so the mark is for giving the full substitution of values leading to an answer correct to 3 SF Examiner's Comments This question was successfully attempted by the majority of candidates. Exemplar 8 $\begin{aligned} E= & \frac{h c}{x} \\ E= & \frac{h \times\left(3 \times 10^{1}\right)}{\left(4.86 \times 10^{-9}\right)} \\ = & 4.090 \end{aligned}$ Exemplar 8 shows the most common incorrect response. The candidate has not realised that, in a 'show that' question, an equation, full substitution and calculated response are all required. This includes inserting numerical values for the constants h and c .
		(vertical) arrow pointing downwards from - 1.36 to -5.45	$\begin{gathered} \text { B1B } \\ \hline \end{gathered}$	Examiner's Comments The majority of candidates scored at least 1 mark, although some would have been helped by better presentation.
		Total	3	
3 5		$\begin{aligned} & (\lambda T=\text { constant }) \\ & 550 \times 5800=370 \times T \\ & T=8600(\mathrm{~K}) \end{aligned}$	C1 A1	Allow however expressed Answer is 8620 to 3 sf
		\mathbf{P} on the main sequence and to LEFT of Sun.	B1	Allow: ECF from (b)(i) Note: temperature of Sun is 5800 K . Examiner's Comments This whole question was well answered in general. Very few could not identify white dwarf and red giant stars. The calculation of the surface temperature was straightforward with a minority suggesting that $\lambda_{\max } \propto \mathrm{T}$. In either case, most candidates plotted the position of Beta Pictoris on the HR plot successfully.
		Total	3	
6	a i	X at closest point on orbit to the Sun	B1	Allow X on the orbit to the left of the Sun
		(When the asteroid orbits the sun a) line segment joining the asteroid to the	B1	Allow this mark on diagram (no labelling required) Allow 'equal area swept in same time'

			Sun sweeps out equal areas in equal time (intervals) Longer distance (in orbit for the same time)	B1	
	b		Work done per unit mass to move an object from infinity (to that point)	B1	Not ' work done on 1 kg'
		ii	Manipulation of $V_{(9)}=(-)$ GM/r	B1	
			gradient $=(-) 30.4$ or equivalent working candidate's gradient or expression $=$ $6.67 \times 10^{-11} \times M$ and M calculated correctly from that gradient $M=4.6 \times 10^{11}(\mathrm{~kg})$	C1 C1 A0	Allow ± 2 Possible ECF from incorrect gradient Allow any subject
	c		Method 1: Evidence of 2.3×10^{-3} and 600^{-1} or $\left(2.3 \times 10^{-3}\right)^{-1}$ and 600 $\begin{aligned} & 1 / 2 v^{2}=6.67 \times 10^{-11} \times 4.6 \times 10^{11} \times(2.3 \\ & \left.\times 10^{-3}-600^{-1}\right) \\ & v=0.20\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ Method 2: Evidence of 7.0×10^{-2} and 5.1×10^{-2} from graph $\begin{aligned} & 1 / 2 v^{2}\left(=\Delta V_{(\mathrm{g})}\right)=7.0 \times 10^{-2}-5.1 \times 10^{-2} \\ & v=0.19\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1 (C1) (C1) (A1)	Possible ECF from (b)(iii) for either value of $G M$ or M Allow $1 / 2 v^{2}=30 \times\left(2.3 \times 10^{-3}-600^{-1}\right)$ Note answer can be 0.19 or 0.20 or $0.2 \mathrm{~m} \mathrm{~s}^{-1}$ Note answer can be 0.19 or 0.20 or $0.2 \mathrm{~m} \mathrm{~s}^{-1}$ Allow correct use of one piece of data arriving at a value for v for 1 mark max
			Total	10	
3 7	a		Electron(s) makes a transition to a lower (energy) level / loses energy and emitting a photon(s) / EM radiation	B1	Examiner's Comments Many candidates muddled up emission (lines emitted by a source) and omission (as in lines absorbed by a low pressure gas when a continuous spectrum passes through it, as in an absorption spectrum), so could not score the mark. Some focused on the experimental procedure of using a diffraction grating. A third of candidates correctly stated that the electron dropped down to a lower energy state, releasing a photon or the equally acceptable 'EM radiation'
		ii	Reduce grating separation / increase distance between grating and screen	B1	Allow 'use finer grating' or 'use grating with more lines mm^{-1} ' Not 'smaller slit size' Examiner's Comments This item tested knowledge of specification 5.5.2 (g) and PAG 5. It would be advisable for Centres, where possible, to allow candidates to observe the effect of changing the slit separation and the grating-

				screen separation independently. Approximately a third of students correctly suggested making one of those adjustments, even if they expressed the former as 'increase the number of lines per mm'. Some candidates presented arguments about plotting the graph on a smaller scale or measuring the wavelength in picometres in an attempt to resolve the peaks in the plot, which was a misinterpretation of the question.
		$\begin{aligned} & \text { wavelength (of peak) }=661.5 \mathrm{~nm} \\ & v=3.0 \times 10^{8} \times(661.5-656.3) / 656.3 \\ & \text { recession velocity }=2.4 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: between 661 and 662 nm Note: check divided by 656.3 nm Range of acceptable answers. 2.1(5)-2.6(1) $\times 10^{6}$ Examiner's Comments Examiners were pleased to see this item answered well, with the majority of candidates gaining either two or three marks. Those that did not either misread the position of the red-shifted spectral peak, did not recognise that they were looking for the peak wavelength or did not use the 'at rest' wavelength for the denominator of the expression for the change in wavelength.
		(Relative) abundance of hydrogen (AW)	B1	Allow 'Hydrogen commonly found in stars' (AW) Examiner's Comments Just over half of all candidates realised that the useful property of hydrogen was its relative abundance in stars and hence galaxies.
	b	Less intense Galaxy is moving faster and therefore greater / longer wavelength (AW) Periodic shift in wavelength (if plane of orbit is in line of sight) (ORA)	B1	Allow 'greater red shift' / 'greater Doppler shift' / 'to the right' for longer wavelength Allow argument referring to splitting of line because of relative velocities of two component stars. Not idea of blue shift. Examiner's Comments Some 9\% of all candidates declined to answer this item, the highest rate for any item on this paper. The most common correct response linked higher distance with higher recessional velocity and thus higher increase in wavelength. Higher ability candidates explained that the orbiting stars would have different velocities relative to the Earth resulting in a periodic change in wavelength from the central peak. References to blue-shifting were erroneous and contradictory.
		Total	9	
3 8		Apparent motion or displacement of a star relative to the position of more distant stars. Caused by the Earth's orbit around the Sun.	B1 B1	

5.5 Astrophysics and Cosmology

		An angle of parallax of 1 arcsecond when displacement of Earth is 1 AU corresponds to distance 1 pc	B1	
		Total	3	
3 9	i	the uncertainty in the measurement of angle is the same for all angles and the bigger the angle measured the smaller the \% error	B1	
	ii	$\begin{aligned} & n_{\max }=d \sin 90 \\ & =1 /\left(5 \times 10^{5} \times 4.33 \times 10^{-7}\right)=4.6 \text { but } n \\ & \text { is an integer so } n=4 \end{aligned}$	C1 A1	
		Total	3	
4		Any four from - reduction in energy released by fusion - gravitational force is greater than that from radiation and gas pressure - core collapses - fusion no longer takes place in the core - fusion continues in the shell around the core - outer layers of star expand and cool - outer layers are released - reference to planetary nebula - reference to white dwarf (left as remnant hot core)	$\begin{gathered} \mathrm{B} 1 \times \\ 4 \end{gathered}$	Ignore current or previous stages of the Sun's evolution
		Total	4	
	i	$\begin{aligned} & v=68 \times 200=13600\left(\mathrm{~km} \mathrm{~s}^{-1}\right) \text { or } 13.6 \\ & \times 10^{6} \mathrm{~m} \mathrm{~s} \\ & \left(\Delta \lambda=\frac{v}{c} \times \lambda\right) \\ & (\text { change in } \lambda=) 13600 \times 10^{-1} \times 280 / 3.00 \\ & \times 10^{8} \text { or } 13(\mathrm{~nm}) \text { or } 13 \times 10^{-9}(\mathrm{~m}) \\ & (\lambda=280+13) \\ & \lambda=290(\mathrm{~nm}) \end{aligned}$	C1 C1 A1	Allow: Any correct velocity if unit matches. Allow: ECF for incorrect v Answer to $\mathbf{3} \mathbf{~ s f}$ is $\mathbf{2 9 3 (n m)}$ Allow: ECF for incorrect $\Delta \lambda$ Examiner's Comments This is a more challenging question with several steps. In multiplying the distance in Mpc by the H 0 as quoted, the velocity of the galaxy

				was $13600 \mathrm{~km} \mathrm{~s}^{-1}$. Some candidates handled the units well in this question, reaching a change in wavelength of 13 nm . If the candidate got as far as that, then approximately half then went on to add the change in wavelength correctly. The change is added as the galaxy is going away from us. $\begin{array}{\|lrl} \left.\begin{array}{rlrl} \text { Exemplar } 7 \\ V & =H_{0} d & & \frac{\Delta \lambda}{\lambda} \approx \frac{v}{e} \\ v & =68 \times 200 & & \\ & =13600 \mathrm{kms}^{-1} & & \frac{\Delta \lambda}{280 \times 10^{-9}}=\frac{13600000}{3 \times 10^{8}} \\ & =13600000 \mathrm{~ms}^{-1} & & \Delta \lambda=1: 269 \times 10^{88} \\ 1.269 \times 10^{-8}+280 \times 10^{-9} & & & =293 \end{array}\right) \end{array}$ nm This candidate has laid out the calculation very carefully. It is obvious that they have handled the idea that the speed of light is given in m s^{-1} and that the galaxy's velocity is in $\mathrm{km} \mathrm{s}^{-1}$. This gives the correct change in wavelength and eventually the correct wavelength.
	ii	Any suitable one from: - Very/infinitely dense - Idea that escape velocity \geq or 'light cannot escape it'	B1	Allow: singularity Allow: physical radius \leq event horizon radius Allow: Distorts space(time) significantly / bends light significantly Allow: Emits Hawking radiation Examiner's Comments Lots of candidates had some good ideas here, and had clearly read widely about black holes. The better answers were those that were specific to black holes rather than merely 'high mass', for example. Good ideas included: - 'has an escape velocity greater (or equal to) the speed of light' - 'infinitely dense' - 'emits Hawking radiation' - 'event horizon greater than physical radius'
		Total	4	
2	i	$\lambda T=$ constant however expressed $500 \times 5.8 \times 10^{3}=240 \times T \text { and } T$ correctly evaluated $T=12000(\mathrm{~K})$	C1 C1 A0	Note answer is 12080 (K) to 4 SF Allow any subject
	ii	($\left.L=4 \pi r^{2} \sigma T^{4}\right)$	C1	Note 12080 K gives $5.5 \times 10^{10}(\mathrm{~m})$

			$\begin{aligned} & 4.62 \times 10^{31}=4 \pi \times 5.67 \times 10^{-8} \times r^{2} \times \\ & 12000^{4} \\ & \text { radius }=5.6 \times 10^{10}(\mathrm{~m}) \end{aligned}$	A1	
			Total	4	
4			Any three from: 1. At the Big Bang the Universe is a singularity / very dense / very hot 2. Expansion / inflation / high energy (gamma) photons but no matter 3. Quarks and leptons form / Quark-Gluon Plasma phase 4. Quarks combine to form neutrons / protons / hadrons 5. Hadrons / neutrons and protons / nucleons combine to make nuclei All candidate's points in the correct sequence	$\begin{gathered} \text { M1x } \\ 3 \end{gathered}$	Allow for point 1: fundamental forces unified Ignore: Any phase after nuclei phase e.g. recombination era /formation of atoms/formation of CMBR Examiner's Comments Many candidates did well on this question as they had learnt the stages and the order of those stages well. The most common reason for loss of marks was not including details about leptons or getting the stages in the wrong order.
			Total	4	
$\begin{array}{\|l} 4 \\ 4 \end{array}$		i	3 downward arrows correctly labelled.	B1	longest being $4.33 \times 10^{-7}(\mathrm{~m})$
		ii	$\begin{aligned} & \Delta \mathrm{E}=\mathrm{hc} / \lambda \\ & \lambda=6.63 \times 10^{-34} \times 3 \times 10^{8} / 4.8 \times 10^{-20} \\ & =4.1(4) \times 10^{-6}(\mathrm{~m}) \end{aligned}$ region: infra red	C1 A1 B1	
		ii			
		ii			allow ecf if wavelength calculation incorrect.
			Total	4	
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	a	i	$\begin{aligned} & F=G M m / r^{2} \\ & F=G \times\left(2.0 \times 10^{41}\right)^{2} /\left(1.4 \times 10^{23}\right)^{2} \\ & \text { force }=1.4 \times 10^{26}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note the mark is for substitution, value of G is not required Ignore: minus sign Allow 1 mark for $1.4 \times 10^{4} \mathrm{~N}$;use of mass of star instead of mass of galaxy. Examiner's Comments While some lower level responses included an attempt to find the gravitational field strength rather than the force most selected the correct formula. After selecting the correct relationship, most candidates could then correctly find the force, provided that they remembered to multiply the masses and square the distance of separation.

	ii	$\begin{aligned} & \text { density }=10^{11} \times 2.0 \times 10^{30} / 2.7 \times 10^{69} \\ & \text { density }=7.4 \times 10^{-29}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	
		Any reasonable answers questioning modelsuch as observed average distance may be different, average mass may be wrong etc.	B1	e.g. black holes, dark energy/matter, expanding universe Examiner's Comments This was a question about challenging the model of the universe. The model takes into account an average mass and average distance of separation, so answers that referred to a variation in masses or distances between galaxies did not score. Higher level responses included that the universe was expanding, so that the distances involved were always changing, or that dark matter was not included in the calculations. There was no indication that candidates were constrained by time in this paper.
	b i	distance between positions $=3.1 \mathrm{~cm}$ $2 p=3.1 / 2$ (any subject) $p=0.78$ arc seconds	M1 M1 A0	Allow distance in the range 2.9 to 3.2 cm Examiner's Comments Almost all candidates scored a mark for measuring the distance between promixa centauri's positions 6 months apart. The scale was well understood, giving an angle of approximately 1.5 arc seconds. The parallax angle is defined to be half of this value, giving a parallax angle in this case of 0.75 arc seconds. This final step was what prevented candidates receiving the second mark.
	ii	$\begin{aligned} & (d=1 / p) ; \mathrm{d}=1 / 0.8) \text { or } 1.25(\mathrm{pc}) \\ & d=1.25 \times 3.26 \\ & d=4.1(\mathrm{ly}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: their value for p Possible ECF from (a)(i) Answer is 4.2 using 0.78 arc seconds Examiner's Comments Most candidates used the data in the previous part of the question ie that the parallax angle was 0.8 arc seconds or trusted their own value which was close to 0.8 arc seconds. Nearly everyone that presented a distance in parsecs could then calculate the distance in light years.
		Total	8	
		$\begin{aligned} & L\left(=4 \pi r^{2} \sigma T^{4}\right)=4 \times \pi \times\left(7.0 \times 10^{8}\right)^{2} \times \\ & 5.67 \times 10^{-8} \times 5800^{4} \\ & L=3.95 \times 10^{26}(\mathrm{~W}) \end{aligned}$	M1 A0	Mark is for substitution of values Allow σ for 5.67×10^{-8} Examiner's Comments Most candidates successfully used the formula for Stefan's Law.
	ii	By ratios: $25=1.7^{2} \times(\mathrm{T} / 5800)^{4}$	C1	$\begin{aligned} & \text { or } T^{4}=25 L / 4 \pi \sigma(1.7 r)^{2} \\ & =\frac{25 \times 3.95 \times 10^{26}}{4 \pi \times 5.67 \times 10^{-8} \times\left(1.7 \times 7 \times 10^{8}\right)^{2}} \end{aligned}$ ECF for L in a(i) but only if $L=4 \times 10^{26}$ to 1 s.f. ECF for incorrect σ in a(i)

		$\begin{aligned} & T^{4}=9.8 \times 10^{15} \\ & T=9950(\mathrm{~K}) \end{aligned}$	A1	Allow 9.9×10^{15} (using $L=4 \times 10^{26}$) Allow 10,000 K Examiner's Comments Higher ability candidates successfully used the more elegant ratios method to reach the correct response. Lower ability candidates had more success if they broke their calculation down into smaller steps, such as calculating and writing down T^{4} rather than going straight to T. Candidates should be encouraged to consider whether their responses to calculations are reasonable as this will alert them to a possible error. For example, some candidates calculated the temperature of Sirius (which they were told is the brightest star in the night sky) to be less than 1 K .
		Total	4	
$\begin{array}{\|l\|} 4 \\ 7 \end{array}$	i	$\begin{aligned} & \mathrm{v}=\frac{(489.8-486.1) \times 3 \times 10^{8}}{486.1}\left(=2.28 \times 10^{6}\right. \\ & \text { age }=1 / \mathrm{H}_{0}=\frac{16.5 \times 10^{6}}{2.28 .1 \times 10^{616}} \\ & \text { age }=2.2 \times 10^{617}(\mathrm{~s}) \end{aligned}$	C1 C1 A1	
		Hydrogen is most common element in stars or Hydrogen has most intense (spectral) lines. Intensity of light from other elements may be too low for accurate measurement.	B1 B1	
		Total	5	
8	i	electron bound to nucleus / represents energy electron must gain to leave the atom / total energy of electron in atom is less than that of a free electron	B1	Allow ionisation level defined as zero as AW for 'represents electron must gain energy to leave atom / move up energy level' Allow potentials for attractive forces are negative. Examiner's Comments This item provided good discrimination between the candidates. Many responses referred incompletely to the negative charge of the electron being the only factor, whereas the correct explanation is much more to do with the electron requiring energy to leave the atom and the ionization level being defined as the zero point. Some candidates were on the right path when they referred to the equivalent statement for gravitational potential energies.
	ii	$\begin{aligned} & 1 \text { energy }=2.55(\mathrm{eV}) \\ & \mathbf{2} \text { energy }=2.55 \times 1.60 \times 10^{-19}(\mathrm{~J}) \\ & \lambda=\frac{6.63 \times 10^{-84} \times 3.0 \times 10^{8}}{2.55 \times 1.60 \times 10^{-19}} \quad \text { (Allow any subject) } \end{aligned}$	B1 C1 C1	Ignore sign Possible ECF from (ii)1

5.5 Astrophysics and Cosmology

		$\begin{aligned} & \text { wavelength }=4.9 \times 10^{-7}(\mathrm{~m}) \\ & \text { wavelength }=490(\mathrm{~nm}) \end{aligned}$	A1	Note: wavelength $=488(\mathrm{~nm})$ to 3 sf Examiner's Comments Virtually all candidates correctly evaluated the energy difference to be 2.55 eV . Negative values were condoned but are unlikely to be accepted in future series. Many candidates correctly calculated the wavelength of emitted light, although a minority did not convert the energy into joules or performed the required conversion to nanometres incorrectly.
		Total	5	
4 9	$\begin{aligned} & i \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \Delta \lambda=\frac{\lambda v}{c}=\frac{486 \times 10^{-9} \times 960 \times 10^{3}}{3.00 \times 10^{8}} \\ & \Delta \lambda=1.56(\mathrm{~nm}) \\ & \lambda=486+1.56=488(\mathrm{~nm}) \end{aligned}$	C1 C1 A1	
	ii	$\begin{aligned} & d=1.25 \times 10^{-6} \mathrm{~m} \\ & \theta=\sin ^{-1}\left(\frac{2 \times 486 \times 10^{-9}}{1.25 \times 10^{-6}}\right) \end{aligned}$ $\theta=51^{\circ}$	C1 A1	Allow 1 mark $\theta=\sin ^{-1}\left(\frac{2 \times 488 \times 10^{-9}}{1.25 \times 10^{-6}}\right)=51^{\circ}$; incorrect 488 nm used instead of 486 nm .
		Total	5	
5	i	$\begin{aligned} & T=0.50(\mathrm{~s}) \text { or } f=2.0(\mathrm{~Hz}) \\ & v=(2 \pi \mathrm{r} / \mathrm{T}=) 2 \pi \times 0.60 / 0.5 \\ & v=7.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow $1.2 \pi / 0.5$ or 2.4π $=7.54\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Alternative method: $\begin{aligned} & \omega=4 \pi \text { or } 12.6\left(\mathrm{rad} \mathrm{~s}^{-1}\right)(\mathbf{C} 1) \\ & \mathrm{v}(=\mathrm{r} \omega)=0.60 \times 12.6 \text { or } 2.4 \pi(\mathbf{M} 1) \\ & =7.54\left(\mathrm{~m} \mathrm{~s}^{-1}\right)(\mathbf{A 0}) \end{aligned}$ Examiner's Comments Most candidates scored this mark. Some tried to use the Doppler equation to find the speed of the sound (rather than the speed of the loudspeaker).
	ii	$\begin{aligned} & \Delta f(\approx v f / c)=(7.5 \times 1700) / 330 \\ & \Delta f=40(\mathrm{~Hz})(\text { or } 39 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note that c represents the velocity of sound Examiner's Comments The question had stated clearly that the students were investigating the Doppler effect, and candidates were expected to use the Doppler equation $\Delta f / f^{\approx} v / c$.

	$\begin{aligned} & \mathrm{ii} \\ & \text { i } \end{aligned}$	y-axis labelled with correct scale	B1	Allow as a minimum one labelled point i.e. 1740 or 1660 ECF(c)(ii) for incorrect Δf Examiner's Comments Many candidates left 6(c)(iii) blank, although full marks could have been given from ECF from (c)(ii). The most common error here was using + and - the value obtained in (c)(ii), rather than subtracting or adding it to 1700, as demonstrated in Exemplar 10 below. Exemplar 10 (ii) The spoed of sound in this experiment is $330 \mathrm{~ms}^{-1}$. Calculate the maximum change in frequency $\Delta \dot{f}$ of the sound detected by the microphone. $\begin{aligned} \Delta_{f}=\frac{2 v t}{c} & =\frac{2 \times 7.5 \times 1700}{330} \\ & =\Delta f=77.3 \end{aligned}$
	i	X labelled at lowest point of circle on Fig. 6.1	B1	Examiner's Comments The purpose of this question was to test whether candidates could associate a maximum decrease in observed frequency (a 'red shift') with motion directly away from the observer / microphone. Unfortunately, not many were able to place the cross correctly, with many leaving this response blank.
		Total	6	
		Level 3 (5-6 marks) Correct calculations for radius and temperature range or distance or intensity for Earth-like temperature within given distance range, with clear explanation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Radius calculated or at least one temperature of planet calculated and some explanation. There is a line of reasoning presented with some structure. The information	B1x6	Use level of response annotation in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks etc. Indicative scientific points may include: Explanation - TRAPPIST-1 is cooler than the Sun - The planets are closer to TRAPPIST-1 - Possible for temperature on planets to be like Earth - For life to exist, temperature is not the only factor - $L=4 \pi r^{2} \sigma T^{4}$ (Any subject) Calculations - Calculation of 'constant' for Earth: $4(.19) \times 10^{5}$ - For inner-most planet, $T=430 \mathrm{~K}$ - For outer-most planet, $T=180 \mathrm{~K}$ - Calculation of distance for $\mathrm{T}=290 \mathrm{~K}$, i.e. $3.4 \times 10^{9}(\mathrm{~m})$

5.5 Astrophysics and Cosmology

				for λ because incorrect values for n, d and θ have been chosen. The response has been put at the bottom of Level 1 because, although there is an attempt at a logical structure, almost all of the information it contains is inaccurate and therefore not relevant.
5 6		i	Velocity determined by Doppler shift of spectral lines	B1

5.5 Astrophysics and Cosmology

| | | \bullet
 Electron only promoted if
 energy of photon matches
 energy gap between two
 given levels |
| :--- | :--- | :--- | :--- | :--- |
| \bulletPhotons remitted in different
 directions
 (so) idea of contrast with non-
 absorbed wavelengths | | |
| | Total | |

